54 research outputs found

    From Basic Research to Application - Technology Transfer from AWI

    Get PDF
    For a responsible development of the Arctic, new remote sensing technologies and services are of great importance. Many of such innovations are based on scientific research. However, it is not trivial that they find their way into application. In order to ease this kind of transfer across the interface between academia and industry, the Alfred Wegener Institute has established a technology transfer office (TTO). The TTO takes up inventions and business ideas emerging from scientific research and supports innovators and entrepreneurs to progress them into the respective markets. The other way round, the TTO serves as the contact point for stakeholders from industry, governmental and non-governmental bodies to forward specific problems into the scientific community. Here we present two examples to illustrate the AWI technology transfer approach: 1) Planned for 2022, the German hyperspectral earth observation satellite EnMAP (Environmental Mapping and Analysis Programme) will measure the reflected radiance from the earth’s surface over a wide hyperspectral wavelength range (from visible to short wave infrared). In order to provide correct hyperspectral satellite products such as land cover (natural surfaces, urban), surface waters, surface mineralogy, hydrology (snow, moisture) etc. in a correct manner, it is necessary to normalize for the incidence and the reflection of light depending on the zenith and azimuth viewing geometries. This is performed by providing the bidirectional reflectance distribution function BRDF for different materials. Determination of BRDFs for terrestrial surfaces is very challenging especially for high latitudes due to the low solar altitude. For Arctic vegetation mapping, a specific satellite field goniometer was developed at AWI to perform such ground truthing (Buchhorn et al., 2013). The goniometer allows for mobile ground-based measurements in order to determine the BRDF for different vegetation types. It consists of an azimuth angle adjustment module mounted on a tripod with a zenith arc with sensor sled equipped with two portable spectro-radiometers, a GPS receiver, an NC-Eye camera system and a white reference panel. The goniometer was prototyped, patented and licensed to a precision mechanics manufacturer. The commercial system in this case addresses the scientific community and specialized service providers. 2) Starting with geophysical ice thickness measurements on sea-ice and using air-borne electromagnetic measuring systems (Krumpen et al. 2011) a group of AWI scientists developed specific sea-ice related services for scientific, governmental and private sector customers operating in Arctic sea-ice. Subsequently the AWI spin-off Drift & Noise Polar Services was established in 2014. The new business was developed towards near real-time remote sensing ice information products and sea-ice consultancy for safer and faster navigation through ice-covered waters. Ice charts and weather information are generated from SAR and optical imagery (e.g. Sentinel 1 and 2). Since reliable broadband data transfer channels do not exist, particularly for high latitudes, the start-up also develops appropriate data compaction and transfer protocols combined with hand-held mobile systems for nautical officers which allow for near real-time access to latest ice data onboard ship. Thus shipping companies are able to save time and fuel by adapting their route while increasing safety. Fig. 1: Portable field spectro-goniometer for EnMAP ground truthing (a). Hand-held sea-ice information system “Ice Pad” using merged optical and SAR imagery (b). References 1. M. Buchhorn, R. Petereit & B. Heim (2013) A Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS) and the Resultant Hyperspectral Field Goniometer System. Sensors, 13 (12), 16105-16128, doi:10.3390/s131216105. 2. T. Krumpen, L. Rabenstein, & J. Hoelemann (2011) Quantifying Sea Ice Formation Rates in the Laptev Sea by Means of ENVISAT SAR Scenes and Airborne Ice Thickness Measurements. International Union of Geodesy and Geophysics (IUGG) General Assembly, Melbourne, Australia, 29 June 2011 - 7 July 2011, hdl:10013/epic.38551

    Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea)

    Get PDF
    Submarine groundwater discharge (SGD) from subseafloor aquifers, through muddy sediments, was studied in Eckernförde Bay (western Baltic Sea). The fluid discharge was clearly traced by 222Rn enrichment in the water column and by the chloride profiles in pore water. At several sites, a considerable decrease in chloride, to levels less than 10% of bottom-water concentrations, was observed within the upper few centimeters of sediment. Studies at 196 sites revealed that >22% of the seafloor of the bay area was affected by freshwater admixture and active fluid venting. A maximal discharge rate of .9 L m−2 d−1 was computed by modeling pore water profiles. Based on pore water data, the freshwater flow from subseafloor aquifers to Eckernförde Bay was estimated to range from 4 x 106 to 57 × 106 m3 yr−1. Therefore, 0.3–4.1% of the water volume of the bay is replaced each year. Owing to negligible surface runoff by rivers, SGD is a significant pathway within the hydrological cycle of this coastal zone. High-resolution bathymetric data and side-scan sonar surveys of pockmarks, depressions up to 300 m long, were obtained by using an autonomous underwater vehicle. Steep edges, with depths increasing by more than 2 m within 8–10 m in lateral directions, equivalent to slopes with an angle of as much as 11°, were observed. The formation of pockmarks within muddy sediments is suggested to be caused by the interaction between sediment fluidization and bottom currents. Fluid discharge from glacial coastal sediments covered by mud deposits is probably a widespread, but easily overlooked, pathway affecting the cycle of methane and dissolved constituents to coastal waters of the Baltic Sea

    Aerobic degradation of organic carbon inferred from dinoflagellate cyst decomposition in Southern Ocean sediments

    No full text
    Organic carbon (OC) burial is an important process influencing atmospheric CO2 concentration and global climate change; therefore it is essential to obtain information on the factors determining its preservation. The Southern Ocean (SO) is believed to play an important role in sequestering CO2 from the atmosphere via burial of OC. Here we investigate the degradation of organic-walled dinoflagellate cysts (dinocysts) in two short cores from the SO to obtain information on the factors influencing OC preservation. On the basis of the calculated degradation index kt, we conclude that both cores are affected by species-selective aerobic degradation of dinocysts. Further, we calculate a degradation constant k using oxygen exposure time derived from the ages of our cores. The constant k displays a strong relationship with pore-water O2, suggesting that decomposition of OC is dependent on both the bottom- and pore-water O2 concentrations
    corecore